
The expected long-time behavior of a solution of the spatially homogeneous Boltzmann
equation seems to leave little room for imagination: if the initial datum has �nite kinetic
energy, then as time t goes to +1 the solution should converge to a Maxwellian distri-
bution. In 1997-1998 I thought about two related, but seemingly more original, problems.
One was the possibility to keep the energy �nite, but let time go to �1 instead of +1;
then, the asymptotic behavior looks a priori unclear, but what is more, there is good reason
to suspect that there is no solution at all. The other was to relax the assumption of �nite
energy, and try to construct self-similar solutions which would capture the asymptotic be-
havior of solutions with in�nite energy, and would play the role of the stable stationary
laws in classical probability theory. In a preliminary investigation, it looked very reasonable
to consider these problems in the simple setting of the spatially homogeneous Boltzmann
equation with Maxwellian collision kernel.
On the �rst topic I made some progress, although far from decisive. I wrote down the

text below and added it to my PhD (June 1998) as an appendix (here I only changed the
references). On the second topic I made no progress, and in fact began to suspect that
those self-similar solutions did not exist. In 2001, Bobylev and Cercignani proved that I
was wrong, by exhibiting such self-similar solutions, constructed with the help of Fourier
transform. They also proved that for t! �1 there exists no solution with �nite moments
of all order: this is a weakened version of the conjecture explained in the following text
(the full version of the conjecture would be that just second moment is suÆcient). Their
paper, which since then appeared in the Journal of Statistical Physics, may be consulted
for more information.

C�edric Villani
November 2003

IS THERE ANY BACKWARD SOLUTION OF THE BOLTZMANN

EQUATION ?

In Chapter XII of their famous book [5], Truesdell and Muncaster consider a spatially
homogeneous gas of Maxwellian molecules, and prove that all the moments of order 2
and 3, namely

R
fvivj,

R
fvivjvk, converge to their equilibrium values exponentially fast,

with a known relaxation constant. They add (p.191): \In a much more concrete way than
Boltzmann's H-theorem, [these quantities] illustrate the irreversibility of the behavior of
the kinetic gas. This irreversibility is particularly striking if we attempt to trace the
origin of a grossly homogeneous condition by considering past times instead of future
ones. Indeed the magnitude of each component of [the pressure tensor] and [the tensor of
the moments of order 3] that is not 0 at t = 0 tends to 1 as t! �1. Thus any present
departure from kinetic equilibrium must be the outcome of still greater departure in the
past."
Appealing as this image may be, it is our conviction that it is actually impossible to let

t ! �1 (which is maybe an even more striking manifestation of irreversibility ?) More
precisely, we state the following
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2 BACKWARD SOLUTION OF THE BOLTZMANN EQUATION

Conjecture 1. Let f(t; v) be a solution of the Boltzmann equation with Maxwellian
molecules, with �nite mass and energy, which is de�ned on all R�RN . Then f is station-
ary : for all time t, f(t; v) = M(v), where M is the Maxwellian distribution with same
mass, momentum and energy as f .

This problem may seem academic, but we shall point out that it can be seen as in-
timately connected with the important problem of the uniformity of the trend to equi-
librium. In addition, we shall give a proof that Conjecture 1 is true for the Landau
equation, precisely because for this problem the tails of distribution do not bother the
trend to equilibrium.
Let us comment on the positivity condition in Conjecture 1. The classical theorems

of existence of a solution to the Boltzmann equation in small times do not mind which
direction of the time is considered. But the positivity is preserved only when time goes
forward, and not backward. As mentioned by Bobylev [1], it is possible to construct
initial datum that are partially negative, and such that the corresponding solutions to
the Boltzmann equation blow up in �nite time. In fact, the positivity is essential for the
mathematical estimates as well as the physical meaning.
Before we go further, it may be enlightening to treat the case of the heat equation

@tf = �f . For this equation, it is easy to construct (explicitly) solutions that exist for
all times (following Cabannes, we shall call them \eternal"). However, they are never
nonnegative, except for the trivial case f = 0. This is immediate in the case when the
energy of f is �nite : then it grows linearly in time, with a speed equal to the total mass
of f , and therefore must be negative at some time. In the case when the energy is in�nite,
Conjecture 1 also holds, by the following argument (communicated to us by S. Poirier) :

Proposition 1. (i) There exists K < 1 such that the following property holds. Let f be
a solution of the heat equation on the interval of time [�T; 0]. Then the ball (jvj � T )
contains at most a proportion K of the total mass of f(0; �).
(ii) As a consequence, if f is an eternal solution of the heat equation, then f(0; �) is not
integrable.

Proof. It is clear that (i) implies (ii). To prove (i), we set

K =

R
jvj�1 e

� jvj2

4 dvR
RN

e�
jvj2

4 dv
=

R
jvj�pT e

� jvj2

4T dvR
RN

e�
jvj2

4T dv
< 1:

Then, let us write

f(0) = g � e�
jvj2

4T

(4�T )N=2

for some function g � 0. Then,Z
jvj�

p
T

f =

Z
jvj�

p
T

dv

Z
dw g(w)

e�
jv�wj2

4T

(4�T )N=2

=
1

(4�T )N=2

Z
dw g(w)

Z
jvj�

p
T

dv e�
jv�wj2

4T :
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Since e�jxj
2

is a decreasing function of jxj,Z
jvj�pT

dv e�
jv�wj2

4T =

Z
jv+wj�pT

dv e�
jvj2

4T

�
Z
jvj�pT

dv e�
jvj2

4T � K

Z
RN

dv e�
jvj2

4T :

Hence, Z
jvj�

p
T

f � K

Z
RN

dw g(w)

Z
RN

dv
e�

jvj2

4T

(4�T )N=2
= K

Z
RN

g(w) dw:

�

This proof is an illustration of our general strategy : the impossibility of solving the
backward equation can be seen as a consequence of the uniformity of the trend towards
\equilibrium" (here, 0).

Let us now prove that, as far as the pressure deviator is concerned, there can be no
departure from equilibrium for eternal solutions of the Boltzmann (or Landau) equation.

Proposition 2. Let f be an eternal solution of the Boltzmann (or Landau) equation with
Maxwellian molecules. Then all the second order moments

R
fvivj are always equal to

their equilibrium values.

Proof. We treat the case of the Landau equation, which is exactly similar to that of the
Boltzmann equation. From the study in [7], we deduce that (noting M the Maxwellian
equilibrium associated to f)Z

f(0; v)vivj dv �
Z
Mvivj dv = e��T

Z �
f(�T; v)�M(v)

�
vivj dv

for some constant � > 0 depending only on the mass and energy of f . Hence����Z f(0; v)vivj dv �
Z
M(v)vivj dv

���� � 4Ee��T ;

where E is the energy of f . Letting T go to +1, we get the result. �

Sketch of proof of Conjecture 1. Let f be an eternal solution of the Boltzmann (or
Landau) equation, and let tn be any sequence of times going to +1. We assume without
loss of generality that f is a centered probability distribution with energy N=2. We set

fn(t; v) = f(t� tn; v):

Since (fn) satis�es a uniform estimate for mass and energy (of course, not for the entropy!),
we know that up to extraction, (fn) converges, weakly in measure sense on all �nite
time-interval, towards a measure �(t; v) with �nite mass and energy. Moreover, using
ff� * ��� in M1(RN � R

N
� ), it is easy to pass to the limit in the weak formulation of

the Boltzmann equation (Cf. [6]), and therefore � is a weak solution of the Boltzmann
equation (in particular, the energy of � is preserved with time).
Now, let us prove that �(t; �) * m as t !1, where m is the Maxwellian distribution

with the same moments as � (note that the energy of � may be less than the energy
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of f !!). This was in fact proven by Gabetta, Wennberg and Toscani in [3], but we shall
give here a simple and self-contained proof which will show once again the interest of
Bobylev's lemma. Since the Boltzmann equation commutes with the convolution by any
Maxwellian MÆ, � �MÆ is still a solution of the Boltzmann equation (in fact, one has to
check that Bobylev's lemma remains true in weak formulation, which is not diÆcult), but
it is C1, and hence it is a strong solution with �nite entropy. Therefore, it converges

strongly towards M �MÆ =M1+Æ as t!1. Hence, for all �, b�(t; �)cMÆ(�)! bm(�)cMÆ(�),
and of course b�(t; �)! bm(�). This entails that �!M weakly in measure sense.
Now, we consider a distance d which is nonexpansive for the Boltzmann semigroup : as

we saw in [4], the Tanaka-Wasserstein distance, or the distance d2, de�ned by

d2(f; g) = sup
�2RN

��� bf(�)� bg(�)���
j�j2 ;

will do. We then write

d(f(0; �); �(tn; �)) � d(f(�tn); �(0; �)):
Letting n go to in�nity, we get

d(f(0; �); m) � lim d(f(�tn); �(0; �)):
But of course, f(�tn) * �(0; �). Therefore, we can conclude that the right-hand side is 0,
as soon as we know that there is no loss of energy for the sequence (fn). This condition
means that, at least for some subsequence,

(1) lim
R!1

sup
n

Z
f(�tn; �)jvj21jvj�R = 0:

The converse of this condition is exactly that for some " > 0, for all R > 0,

limt!�1

Z
jvj�R

f(t; �)jvj2 � ";

i.e. that a nonnegligible fraction of the energy goes to in�nity.
The condition (1) is true for eternal solutions of the Landau equation, as implied by

Corollary 6.1 in [7]: more precisely, we show that if f is a solution of the Boltzmann
equation and �f(K) = (1=2)

R
f jvj21jvj2=2�K, then

(2) �f(t;�)(K) � N

2
e�2t +

C

K
:

Hence, if f is eternal,

�f(0;�)(K) � C

K
;

and the conclusion follows.
For the Boltzmann equation, this is not so simple, since nothing is known about the

uniformity of the decrease of the tails of energy. In fact, we were unable to progress
substantially on this problem. Bobylev [1] has proven that for all Æ > 0, one can �nd
an initial datum for the Boltzmann equation such that the trend to equilibrium is slower
than CÆe

�Æt. However, examination of the constant CÆ (which is explicit) does not rule
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out the possibility that some relation like (2) hold with another function �(t) instead of
e�2t.

Let us now briey give another strategy, based on a direct use of the distance d2, which
entails the result immediately for the (linear) Fokker-Planck equation.

Proposition 3. Let f be a solution of the Fokker-Planck equation @tf = r� (rf + v � f).
Then,

d2(f(t; �);M) � e�2td2(f(0; �);M):

Proof. It is immediate : since f(t; �) = M1�e�2t � f(0; �)e�2t (where M� is the Maxwellian
distribution with temperature �), we havebf(t; �) = cM �p

1� e�2t�
� bf(0; e�t�):

Therefore, using cM(�) = cM(
p
1� e�2t�)cM(e�t�),

d2(f(t; �;M)) = sup
�

���cM �p
1� e�2t�

� bf(0; e�t�)� cM(e�t�)
���

j�j2

� sup
�

��� bf(0; e�t�)� cM(e�t�)
���

j�j2 = e�2td2(f(0; �);M):

�

Since d2(f(0; �);M) is bounded by a quantity depending only on the energy of f , we
conclude as before that there are no eternal solutions of the Fokker-Planck equation.

Now, if one tries to apply the same method to the Boltzmann equation, writing as in [4]

@

@t

( bf � cM)

j�j2 +
( bf � cM)

j�j2 =

Z
SN�1

dn

" bf(�+) bf(��)� cM(�)

j�j2
#
;

and using the fact that at least one of the two vectors �+ and �� has norm less than
j�j=p2, one can arrive (at least formally) to the di�erential inequality

(3)
@

@t
J(t; R) + J(t; R) � J

�
t;
Rp
2

�
;

where

J(t; R) = sup
j�j�R

j bf(t; �)� cM(�)j
j�j2 :

Therefore, a possible way towards proving conjecture 1 would be to prove that every
bounded solution of (3), increasing in R, is in fact identically 0.

Remark. It is easy to check that Bobylev's explicit solutions tend to become negative if
one tries to continue them for (too) negative times. This is also true for simple caricatures
as the 4-dimensional velocity model. For considerably more complicated simpli�ed models,
Cabannes [2] was able to prove Conjecture 1.
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